Reconciling Fugitive Dust Emissions with Ambient Measurements: Along the Unpaved Road

V. Etyemezian*, J. Gillies, H. Kuhns, D. Nikolic Division of Atmospheric Sciences Desert Research Institute Las Vegas, NV

and

G. Seshadri, J. Veranth University of Utah SLC, UT

Sponsors: WESTAR, DoD/SERDP

Outline

- Background
 - What is the phenomenon being examined?
 - Why is it important?
- Modeling approaches
 - Gaussian plume model (ISC style)
 - Box Model (Gillette style)
 - Deposition velocity
- Model results
 - What do initial results tell us?
 - How does this compare with measurements?
 - Where do we need improvements?
- Conclusions and Future Work

Relevance to Fug Dust Emissions

- Not accounting for near-field deposition ⇒
 - Overestimate fug dust regional contribution (e.g. Chow and Watson, 2000; Countess, 2001)
 - Erroneous estimate of size distribution of regionally transportable fraction (important for visibility)
 - Cannot resolve PM₁₀ contributions from varying fug dust sources
 - Is it the nearby unpaved road, the farm 5 km upwind, or China?
- Over-accounting for deposition ⇒
 - Similar problems

Downwind of Dust Source

Downwind Regimes

Removal of PM₁₀ dust by vegetation/land cover

- Region "A":
 - − Plume height ~ vegetation height
 - Work in progress
- Region "B":
 - Mixed height > Plume height > vegetation height
 - Addressed in this study
- Region "C":
 - $-PM_{10} \sim constant$ with height
 - Addressed in regional scale models

Gaussian Plume Approach

- Use Gaussian plume model to simulate dispersion
- Assumptions:
 - o Gaussian profile is reasonable
 - o Deposition is "slow" compared to dispersion. I.e. can distribute removal over entire plume
 - o Can use bulk deposition models even though concentration gradients high very near the source

• Basic equation similar to ISC3:

$$C = (1 \times 10^{-6}) \frac{QVD}{2\pi u_s \sigma_y \sigma_z} \exp \left[-0.5 \left(\frac{y}{\sigma_y} \right)^2 \right]$$

Q = pollutant emission rate (g/s)

V = a vertical term that includes reflection, deposition, and mixing

D = chemical decay term (equal to 1 since dust non-reactive)

 σ_y , σ_z = standard deviation of vertical and lateral concentration

 u_s = mean wind speed at release height.

Assume line source \Rightarrow Integrate crosswind:

$$C = \left(1 \times 10^{-6}\right) \frac{\dot{Q}V}{\sqrt{2\pi} u_s \sigma_z}$$

Vertical term:

$$V = \exp\left[-0.5\left(\frac{z_r - h}{\sigma_z}\right)^2\right] + \exp\left[-0.5\left(\frac{z_r + h}{\sigma_z}\right)^2\right] + [\dots]$$

If
$$h = 0$$
, $z = 0$, $V=2$

Vertical Standard Deviation:

$$\sigma_z = ax^b$$

Constants a, b from Turner (1970) dependent on atmospheric stability and distance downwind

Additional Considerations:

• Initial height \Rightarrow + x' to downwind distance

$$\sigma_z = a(x + x')^b = IH \approx H_{vehicle}$$

- Assume WS uniform with height. I.e. WS×Time=Distance
- Limited accuracy near ground and near source

Box Model Approach

- Proposed by Gillette (2002)
- Mass balance on long box downwind of unpaved road. Particle flux only at entrance, top, and bottom
- Dispersion through top ∝ Concentration

$$\frac{dm}{dt}_{top} = K * C \qquad K = Au_*$$

$$K = Au_*$$

• Deposition at ground ∝ Concentration

$$\frac{dm}{dt}_{depos} = V_d * C$$

Box Model Cont

• Resultant Equation for Transportable Fraction

$$\Phi = \frac{\frac{dm_{up}}{dt}}{\frac{dm_{road}}{dt}} = \left[1 - \frac{V_d}{(V_d + K)}\right] = \frac{K}{(V_d + K)}$$

where V_d and K (= 0.06 u^*) are constant

Dry Deposition

- Flux to Ground \sim Concentration $F_{dep} = V_d * C \quad V_d \equiv \text{Deposition velocity}$
- Framed for removal from uniform concentration in bulk medium (e.g. Slinn, 1982)
 - Ground release is opposite situation
 - Roughness elements < concentration profile
 - Assumptions may apply ~10's m downwind
- Assume removal due to impaction mostly

Results: ISC Fraction in Suspension vs. distance

Results: Box Model Prediction

Results: Box Model Difficulties

- Deposition O.K.
- For first order dispersion, I.e. Limited applicability

$$\frac{dm}{dt}_{top} = K * C$$

• To specify K correctly, require specification of distance downwind

Results: Stability and Transportable Fraction

Stability	<u>u* = 0.3 m/s</u>		<u>u*=0.5 m/s</u>	
	500 m	5,000 m	500 m	<i>5,000</i> m
Very Stable	0.95	0.87	0.72	0.43
Stable	0.96	0.91	0.79	0.57
Neutral	0.97	0.94	0.83	0.66
Moderately Unstable	0.98	0.98	0.91	0.86
Very Unstable	0.99	0.99	0.93	0.92

Note: Particle size differences similar to u* differences

Results: Concentration not indicator of removal

Measurements: Daytime desert

Measurements: Nighttime urban?

Array of cargo containers. Dimensions (m): $2.5 \times 2.4 \times 12.2$

Effective z_0 : 0.1 m

Effective u_{*}: 0.4 m/s

Results: Measurement vs. model

- Daytime Desert fraction PM₁₀ removed:
 - Measured: 0%
 - Modeled: 3%
- Nighttime urban fraction PM₁₀ removed:
 - Measured: 85%
 - Modeled: 30%

Conclusions

- Fraction of PM₁₀ removed near source
 - Decreases with WS initially, increases at higher
 WS
 - Minimum for unstable conditions
 - Minimum for small roughness height
 - Not proportional to concentration
- Box model has limitation in dispersion

Future Work

- Gaussian model simple and holds promise
- Essential to have field data
 - Multiple atmospheric conditions
 - Multiple roughness (vegetative/land cover type and density)
- Examine "Region A" removal

